

Current (2019-2020) GHG emissions, Mt CO ₂ e			
	World	USA	Canada
Total GHG emissions	59,000±6,600	6600	740
Total N ₂ O emissions	2,700±1,600	440	40
N ₂ O from agriculture	1,800±1,100	350	24
N ₂ O from fertilizer use	634	83	13
Fertilizer N use, Mt	111	11.6	2.8

Scope in USA – case study

Annual emissions from use of N fertilizer in corn: 45 Mt CO₂e, mostly as N₂O Possible reductions by 2050: Eliminating N surplus: 6-12 Mt Doubling use of inhibitors: 7-10 Mt 30-50%, not 71% (SystemIQ-IFA, 2022)

Scope in Canada

- Meeting the target of an ABSOLUTE 30% reduction would require either very large cost-share, or reduced production.
- Crop production and yields are on increasing trends
- 4R implementation can provide 14% reduction by 2030 while increasing crop yields

Plant Nutrition Canada

New Core Principles

RIGHT RATE: Address variability in crop response RIGHT TIME: Address changes through the growing season RIGHT PLACE: Place nutrients to avoid loss

