

Plant Nutrition Canada	Research R	esources News About Contact	Ƴ in (
	Nutrien	ıt Stewardship	
Pillar	APPLY	INTERPRET	EXTEND
	SCIENCE	SCIENCE	SCIENCE
Detail	Lead, shape and mold concepts and intended implementation pathways for nutrient stewardship	Explain implications, strengths and limitations of new scientific reports on issues relevant to nutrient stewardship	Educate and inform practitioners on science- based principles underlying agronomic practices relevant to nutrient stewardship
Audiences	Agri-environmental scientists, industry leaders & agronomists	Industry association personnel	Retailers, Certified Crop Advisers, government and agricultural value chain personnel

N	Nestern Lake	Erie V	Vatershe	ed				
Year	Outputs, kt P ₂ O ₅ crop removal	Inputs fertilizer	s, kt P ₂ O ₅ r manure	PUE	Line Con			
1987	92	103	17	76%	Wasters			
2016	136	73	22	143%	Lake Erie Uatershed			
 Cropland PUE almost doubled. Loss of dissolved P to the lake also doubled. Unintended consequence of conservation tillage with broadcast application of P fertilizer. 								
GIS	INSTITUTE	Jo	arvie et al., 20) 17, J Env	viron. Qual. 46(1):123-132			

4R efficacy for r - ranges found in field exp	4R efficacy for reducing P loss, % reduction - ranges found in field experiments across the USA and Canada						
Practice	Dissolved P	Particulate P					
Source							
Rate	60 to 88%	0					
Time	41 to 42%	0					
Place	20 to 98%	-60% to 0					
Soil inversion	0 to 92%	-59% to 0					
Conservation tillage	-308 to -40%	-33 to 96%					

One size does not fit all: Toward regional conservation practice guidance to reduce phosphorus loss risk in the Lake Erie watershed. Macrae et al., 2021 JEQ. >>> OSCIA webinars 29-30 November!

Plant

Nutrition Canada

Strong scientific support for nitrification inhibitors reducing nitrous oxide emissions

"Compilers can develop Tier 2 emission factors specific to mitigation options such as the application of <u>nitrification inhibitors</u> (Akiyama et al. 2010, Ruser & Schulz 2015, Gilsanz et al. 2016)." [2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories]

Meta-analysis results:

Akiyama et al 2010 – 38% Ruser & Schulz 2015 – 35% Gilsanz et al 2016 – 34% to 42% Abalos et al 2016 – 26% Thapa et al, 2015 – 20% to 40% DeCock, 2014 – 18% to 55% Eagle et al, 2017 – 15% to 39% Maaz, Sapkota, et al. 2021. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Chang. Biol.

"we found the use of EEFs (e.g., urease inhibitors, nitrification inhibitors, neem, or polymer coated urea) reduced N₂O emissions. The current finding of a reduction of 24% falls within the range reported by other meta-analyses (Eagle et al., 2017; Lam et al., 2017; Li et al., 2018; Qiao et al., 2015; Snyder et al., 2009; Thapa et al., 2016; Xia et al., 2017). Unlike other predictors, EEFs appear to have a consistent effect under a range of conditions and thus generalizable."

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Nutrition Canada

Summary

- The fertilizer industry seeks to advance nutrient stewardship through 4R and Responsible Plant Nutrition.
- Soil test, nutrient balance and 4R practice survey data can help inform policy on changes to management – 4R and beyond – effective in reducing nutrient loads to water.
- Still need more data and better understanding of soil P drainage water P relationships.
- Digital tools for real-time fertilizer decisions may help address the role of weather in varying demand for nitrogen.
- Collaboration invited in the furthering of 4R!

